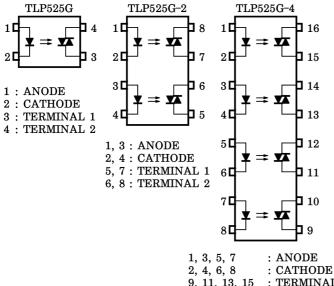
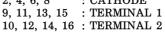
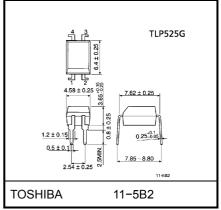
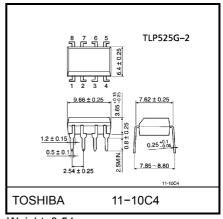
TOSHIBA Photocoupler GaAs IRed & Photo-Triac


# TLP525G,TLP525G-2,TLP525G-4

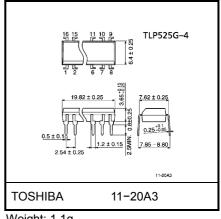

Triac Drive Programmable Controllers AC-Output Module Solid State Relay


The TOSHIBA TLP525G, -2 and -4 consist of a photo-triac optically coupled to a gallium arsenide infrared emitting diode. The TLP525G-2 offers two isolated channels in an eight lead plastic DIP package, while the TLP525G-4 provides four isolated channels in a sixteenn lead plastic DIP package.

- Peak off-stage voltage: 400V (min.)
- Trigger LED current: 10mA (max.)
- Peak on-stage current: 2Apk (max.)
- Isolation voltage: 2500V<sub>rms</sub> (min.)
- UL recognized: File no.E67349


#### Pin Configurations (top view)








Weight: 0.26g



Weight: 0.54g



Weight: 1.1g

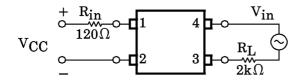
## Maximum Ratings (Ta = 25°C)

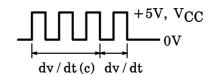
| Characteristic              |                                                                       |           |                      | Ra                                |                        |                  |
|-----------------------------|-----------------------------------------------------------------------|-----------|----------------------|-----------------------------------|------------------------|------------------|
|                             |                                                                       |           | Symbol               | TLP525G                           | TLP525G–2<br>TLP525G–4 | Unit             |
| LED                         | Forward current                                                       |           | ١ <sub>F</sub>       | 50 50                             |                        | mA               |
|                             | Forward current derating                                              |           | I <sub>F</sub> / °C  | -0.7 (Ta ≥ 53°C) -0.5 (Ta ≥ 25°C) |                        | mA / °C          |
|                             | Pulse forward current                                                 |           | I <sub>FP</sub>      | 1 (100µs pulse, 100pps)           |                        | А                |
|                             | Reverse voltage                                                       |           | V <sub>R</sub>       | 5                                 |                        | V                |
|                             | Junction temperature                                                  |           | Тj                   | 125                               |                        | °C               |
|                             | Off–state output terminal voltage                                     |           | V <sub>DRM</sub>     | 400                               |                        | V                |
|                             | On-state RMS<br>current                                               | Ta = 25°C | I                    | 100                               | 80                     | mA               |
| Detector                    |                                                                       | Ta = 70°C | I <sub>T (RMS)</sub> | 50                                | 40                     | IIIA             |
|                             | On–state current derating<br>(Ta≥25°C)                                |           | I <sub>T</sub> / °C  | -1.1                              | -1.1 -0.9              |                  |
|                             | Peak on state current                                                 |           | I <sub>TP</sub>      | 2 (100µs pulse, 120pps)           |                        | А                |
|                             | Peak nonrepetitive surge<br>current (P <sub>W</sub> = 10ms, DC = 10%) |           | I <sub>TSM</sub>     | 1.2                               |                        | А                |
|                             | Junction temperature                                                  |           | Тj                   | 115                               |                        | °C               |
| Storage temperature range   |                                                                       |           | T <sub>stg</sub>     | -55~125                           |                        | °C               |
| Operating temperature range |                                                                       |           | T <sub>opr</sub>     | -40~100                           |                        | °C               |
| Lead soldering temperature  |                                                                       |           | T <sub>sol</sub>     | 260 (10s)                         |                        | °C               |
| Isolation voltage (Note)    |                                                                       |           | BVS                  | 2500 (AC, 1min., R.H. ≤ 60%)      |                        | V <sub>rms</sub> |

(Note) Device considered a two terminal device: LED side pins shorted together and detector side pins shorted together.

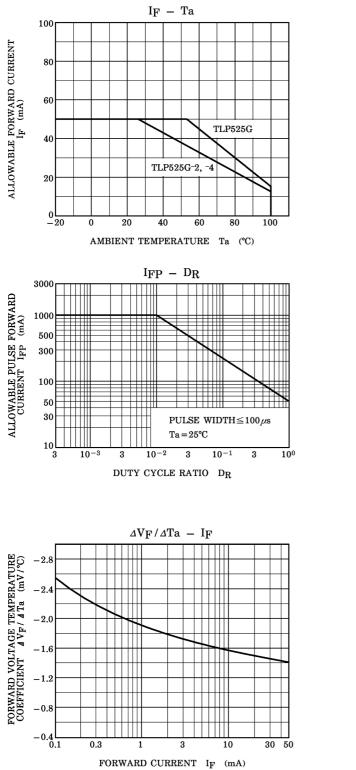
## **Recommended Operating Conditions**

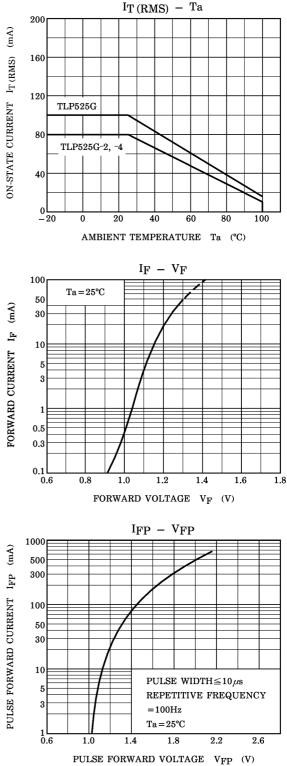
| Characteristic        | Symbol           | Min. | Тур. | Max. | Unit |
|-----------------------|------------------|------|------|------|------|
| Supply voltage        | V <sub>AC</sub>  | —    | _    | 120  | Vac  |
| Forward current       | ١ <sub>F</sub>   | 15   | 20   | 25   | mA   |
| Peak on-state current | I <sub>TP</sub>  | —    | _    | 1    | А    |
| Operating temperature | T <sub>opr</sub> | -25  |      | 85   | °C   |

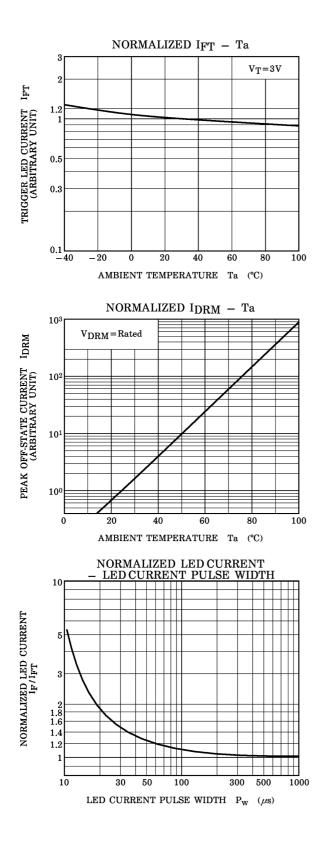

# Individual Electrical Characteristics (Ta = 25°C)

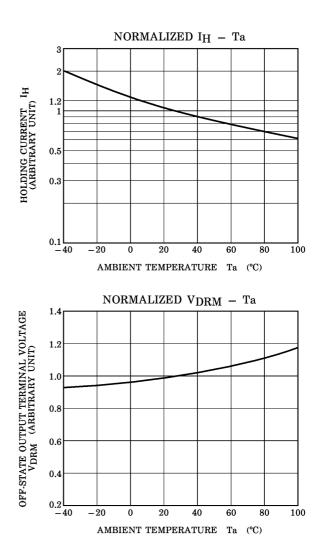

| Characteristic |                                                 | Symbol           | Test Condition                                                             | Min. | Тур. | Max. | Unit   |
|----------------|-------------------------------------------------|------------------|----------------------------------------------------------------------------|------|------|------|--------|
| LED            | Forward voltage                                 | VF               | I <sub>F</sub> = 10mA                                                      | 1.0  | 1.15 | 1.3  | V      |
|                | Reverse current                                 | I <sub>R</sub>   | V <sub>R</sub> = 5V                                                        | _    | _    | 10   | μA     |
|                | Capacitance                                     | CT               | V = 0, f = 1MHz                                                            | _    | 30   |      | pF     |
|                | Peak off-state current                          | I <sub>DRM</sub> | V <sub>DRM</sub> = 400V                                                    | _    | 10   | 100  | nA     |
|                | Peak on-state voltage                           | V <sub>TM</sub>  | I <sub>TM</sub> = 100mA                                                    | _    | 1.7  | 3.0  | V      |
| ctor           | Holding current                                 | Ι <sub>Η</sub>   | —                                                                          | _    | 0.2  |      | mA     |
| Detector       | Critical rate of rise<br>of off–state voltage   | dv / dt          | V <sub>in</sub> = 120V <sub>rms</sub> , Ta = 85°C<br>(Figure 1)            | 200  | 500  |      | V / µs |
|                | Critical rate of rise<br>of commutating voltage | dv / dt (c)      | V <sub>in</sub> = 30V <sub>rms</sub> , I <sub>T</sub> = 15mA<br>(Figure 1) | _    | 0.2  |      | V / µs |

# Coupled Electrical Characteristics (Ta = 25°C)


| Characteristic              | Symbol          | Test Condition                    | Min.               | Тур.             | Max. | Unit |
|-----------------------------|-----------------|-----------------------------------|--------------------|------------------|------|------|
| Trigger LED current         | I <sub>FT</sub> | V <sub>T</sub> = 3V               | _                  | 5                | 10   | mA   |
| Capacitance input to output | CS              | V <sub>S</sub> = 0, f = 1MHz      | —                  | 0.8              | _    | pF   |
| Isolation resistance        | R <sub>S</sub>  | V <sub>S</sub> = 500V, R.H. ≤ 60% | 5×10 <sup>10</sup> | 10 <sup>14</sup> | _    | Ω    |
|                             | BVS             | AC, 1 minute                      | 2500               | _                | _    | Vrms |
| Isolation voltage           |                 | AC, 1 second, in oil              | —                  | 5000             | _    |      |
|                             |                 | DC, 1 minute, in oil              | —                  | 5000             | _    | Vdc  |


Fig.1 dv / dt Test Circuit




# TOSHIBA









#### **RESTRICTIONS ON PRODUCT USE**

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.